Rabu, 09 Januari 2013

Cara Kerja PLTN (Pembangkit Listrik Tenaga Nuklir)


Gambar 1. Skema cara kerja pembangkit listrik berbahan bakar batubara.
Batubara yang merupakan bahan bakar dipasok ke dalam tungku (furnace). Di situ batubara  dibakar dan akan menghasilkan energi atau kalor. Selanjutnya energi tersebut akan dipindahkan ke air di dalam boiler (F), di mana air kemudian akan mendidih dan berubah bentuk menjadi uap (A). Uap yang mempunyai suhu tinggi dan tekanan tinggi ini akan dialirkan ke turbin (B). Di dalam turbin, uap akan melewati sudu-sudu turbin yang kemudian akan memutar poros untuk menggerakkan generator (C) dan menghasilkan listrik. Uap yang telah melewati turbin selanjutnya akan masuk ke dalam kondensor (D), di mana uap tersebut akan didinginkan dan berubah bentuknya kembali menjadi cair. Air dari kondenser selanjutnya akan dikembalikan ke dalam boiler dengan menggunakan pompa umpan (E).  Demikian seterusnya proses tersebut berlangsung berulang-ulang. Karena proses tersebut berulang dan menggunakan uap sebagai media untuk memindahkan energi, maka  proses ini disebut dengan istilah siklus uap atau dikenal juga dengan istilah siklus Rankine.
Lalu bagaimana halnya dengan reaktor nuklir atau PLTN?  PLTN yang beroperasi saat ini sebagian besar juga bekerja berdasarkan proses siklus Rankine. Oleh karena itu secara garis besar prinsip pembangkitan listriknya juga mirip dengan PLTU. Akan tetapi bedanya, bahan bakarnya diganti dengan bahan bakar nuklir. Proses terbentuknya energi tidak berada di tungku, melainkan di teras reaktor.  Gambar 2 di bawah ini menampilkan skema kerja PLTN.
Gambar 2. Skema cara kerja pembangkit listrik tenaga nuklir.
Kalau dilihat dari Gambar 1 dan Gambar 2, akan tampak dengan jelas perbedaannya. Tungku dan boiler yang ada di PLTU ternyata diganti dengan sistem pemasok uap nuklir atau SPUN (Nuclear Steam Supply System/NSSS). Di luar dari SPUN, komponen-komponen yang ada sangatlah mirip dengan yang ada di PLTU. Oleh karena itu, orang yang bekerja di PLTN tidak hanya berasal dari lulusan teknik nuklir saja, tetapi juga dari bidang keteknikan yang lain seperti teknik mesin, teknik listrik, teknik kimia dan sebagainya. Lalu apa yang ada di dalam SPUN tersebut? Kita akan meninjau dua jenis PLTN yang banyak digunakan di dunia, yaitu jenis reaktor air tekan / RAT (Pressurized Water Reactor/PWR) dan reaktor air didih / RAD (Boiling Water Reactor / BWR), yang skemanya bisa kita lihat di Gambar 3 dan 4.
Gambar 3. Skema cara kerja reaktor air tekan.
Pada PLTN jenis RAT, kita bisa melihat bahwa uap yang kemudian akan masuk ke turbin ternyata dihasilkan di steam generator (SG) atau pembangkit uap. Jadi di sini yang bertindak sebagai boiler adalah SG.
Bahan bakar nuklir berada di dalam teras reaktor (reactor core), dan teras reaktor berada di dalam bejana reaktor (reactor vessel). Bahan bakar akan mengalami reaksi fisi dan menghasilkan energi termal yang berada di material bahan bakar itu sendiri. Agar energi tersebut dapat dimanfaatkan, maka bahan bakar harus didinginkan menggunakan air pendingin. Jadi air pendingin ini akan mengalir ke dalam teras reaktor dari bawah, selanjutnya mengambil kalor dari bahan bakar, dengan demikian suhunya akan naik, dan selanjutnya keluar ke atas dari teras untuk selanjutnya masuk ke SG. Di dalam SG energi yang dikandung oleh air akan digunakan untuk menguapkan air yang akan masuk ke turbin. Air yang sudah dingin selanjutnya akan dikembalikan ke teras reaktor. Pada PLTN jenis ini, air pendingin reaktor dijaga jangan sampai mendidih, caranya dengan mempertahankan tekanan air tetap tinggi. Agar tujuan ini tercapai digunakan komponen yang disebut pressurizer (PRZ).
Jadi kalau mau dicari ciri khas dari PLTN tipe PWR ini:
  1. PWR mempunyai dua aliran pendingin yang terpisah, yaitu air untuk mendinginkan reaktor (istilahnya adalahsistem pendingin primer) dan air yang akan menjadi uap untuk memutar turbin (istilahnya adalah sistem pendingin sekunder).
  2. Proses pendidihan air terjadi di SG, di mana energi ditransfer dari  pendingin primer ke  pendingin sekunder.
  3. Pada sistem pendingin primer tidak terjadi pendidihan karena tekanan dijaga tetap tinggi oleh PRZ.
  4. Batang kendali yang  mengatur berlangsungnya reaksi fisi terletak di bagian atas bejana reaktor.
Gambar 4. Skema cara kerja reaktor air didih.
Tampak dari Gambar 4 di atas bahwa pada BWR hanya ada satu jenis air pendingin saja. Proses pendidihan terjadi di dalam bejana reaktor, atau dengan kata lain yang bertindak sebagai boiler ya bejana reaktornya itu sendiri. Energi yang dihasilkan dari reaksi fisi akan digunakan secara langsung untuk mendidihkan air dan uap yang dihasilkan dari bejana reaktor akan langsung dialirkan menuju ke turbin.
Ciri khas dari reaktor ini adalah:
  1. Hanya ada satu jenis aliran pendingin.
  2. Proses pendidihan berlangsung di dalam bejana reaktor.
  3. Karena terjadi pendidihan pada sistem pendingin maka tekanan pendingin lebih rendah daripada PLTN jenis PWR.
  4. Karena uap akan mengumpul di bagian atas bejana, maka batang kendali ditempatkan di bagian bawah bejana reaktor.
Mengapa menggunakan air? Dengar-dengar ada reaktor yang menggunakan air berat bahkan menggunakan garam sebagai pendinginnya? Katanya kecelakaan di Fukushima diakibatkan dari ledakan hidrogen yang berasal dari reaksi antara air dengan bahan bakar, berarti bahaya dong kalau pakai air?
Mengapa ada batang kendali? Material yang digunakan apa? Bisa tidak mengendalikan reaktor tanpa batang kendali?
Oke… oke.. mungkin di antara pembaca ada yang bertanya-tanya semacam itu…Bahkan mungkin pertanyaan yang lebih advanced lagi. Tapi kita harus menahan diri dulu. Agar bisa menjawab pertanyaan-pertanyaan lanjutan semacam itu kita harus tahu fondasinya terlebih dahulu. Apa itu nuklir, apa saja material nuklir, bagaimana interaksi antara neutron dengan material, apa yang dimaksud dengan radioaktivitas, dan sebagainya, dan sebagainya. Jadi di artikel-artikel berikutnya kita akan meninjau dasar-dasar ilmu nuklir. Oke? Just stay tuned…
 

Tidak ada komentar:

Posting Komentar